

Math Description Engine (MDE)
Software Component Library

Programmer's Guide

September 30, 2005

NASA Learning Technologies
Information Accessibility Lab

Johnson Space Center

http://prime.jsc.nasa.gov
info@prime.jsc.nasa.gov

http://prime.jsc.nasa.gov
mailto:info@prime.jsc.nasa.gov

Math Description Engine Programmer's Guide

MDE Programmer's Guide 2

TABLE OF CONTENTS
Math Description Engine (MDE) Software Component Library 1
Programmer's Guide.. 1
Math Description Engine (MDE) Software Component Library Programmer's Guide..... 6
Section 1 Introduction ... 6

1.1 Purpose ... 6
1.2 Benefits and Use.. 6

1.2.1 Product Accessibility ... 6
1.2.2 End-Users .. 6
1.2.3 Product Developers .. 7
1.2.4 MDE Demonstration .. 7
1.2.5 MDE Availability... 7
1.2.6 Research & Development / Technology Transfer 7

1.3 Audience ... 8
1.4 Assumptions and Limitations... 8
1.5 Related Documents/Resources... 8
1.6 Feedback ... 9

Section 2 MDE Functional Overview .. 10
2.1 High Level Functional Description .. 10

2.1.1 Text Descriptions of Graphs... 11
2.1.1.1 Purpose .. 11
2.1.1.2 Modes .. 11
2.1.1.3 Content .. 12
2.1.1.4 Description Engine Approach... 12

2.1.2 Sonification of Graphs ... 13
2.1.3 Drawings of Graphs ... 14

2.2 Inputs .. 15
2.2.1 Mathematical Equations ... 15

2.2.1.1 Supported Equation Types.. 15
2.2.1.2 Multiple Inputs... 16
2.2.1.3 API Input Format ... 16
2.2.1.4 Equation Syntax ... 16

2.2.2 Time-Series Data ... 18
2.2.2.1 Supported Data Types .. 18
2.2.2.2 Multiple Inputs... 19
2.2.2.3 Input Formats... 19

2.2.3 MDE Properties ... 20
2.2.3.1 Property Values.. 20
2.2.3.2 Property Files... 21
2.2.3.3 Property Methods... 21

2.3 Outputs.. 21
2.3.1 Text Descriptions ... 22
2.3.2 Cartesian Graphs.. 22

2.3.2.1 Settings .. 22
2.3.2.2 Zoom and Pan .. 22
2.3.2.3 Multiple Curves ... 23

Math Description Engine Programmer's Guide

MDE Programmer's Guide 3

2.3.2.4 Sonification Tracer... 23
2.3.2.5 Graph Zoom/Reset Widget ... 23

2.3.3 Graph Sonification ... 25
2.3.3.1 Sounder and SoundControl Classes .. 25
2.3.3.2 Left/Right Panning and Up/Down Pitch Renderings 25
2.3.3.3 Sound Sweep Speed Control .. 26
2.3.3.4 Axis Crossing Indicators .. 26
2.3.3.5 Volume Control ... 27

2.3.4 MDE Properties ... 28
Section 3 Using the MDE API... 29

3.1 Configuring MDE for use in your software.. 29
3.1.1 Download .. 29
3.1.2 Configuration... 29

3.1.2.1 Java JDK and JRE Requirements ... 29
3.1.2.2 Java Access Bridge Requirements .. 29
3.1.2.3 Operating Systems ... 30

3.1.3 License .. 31
3.2 MDE Classes... 32

3.2.1 Main Packages ... 32
3.2.2 Core Classes .. 32

3.2.2.1 Core Functionality.. 32
3.2.2.2 Core GUI Classes... 33
3.2.2.3 Keyboard Control Classes .. 34

3.3 MDE Tutorial .. 35
3.3.1 Required Classes - Solver and MdeSettings.. 35

3.3.1.1 MdeSettings: Setting and storing MDE properties 35
3.3.1.2 Solver: Solution generation and management 35

3.3.2 Core Functionality: Describer, Sounder, and CartesianGraph 36
3.3.2.1 Describer: Text descriptions of graphs.. 36
3.3.2.2 Sounder: Sonifications of graphs .. 38
3.3.2.3 CartesianGraph: Drawings of graphs ... 41
3.3.2.4 Use Solver to Reset Graph (Solution) Bounds 42
3.3.2.5 Data Input Examples .. 43
3.3.2.6 More Example Programs.. 45

3.3.3 More About The MDE Solution Engine (Solver and Solution) 45
3.3.3.1 Solution Class .. 45
3.3.3.2 Using Components Together - Synchronization.................................. 45

Appendix A: Current Text Description Examples.. 47
References .. 52

Figures
Figure 1 Example uses of the MDE Library.. 10
Figure 2 Example MDE text description output for the equation "y=3x"....................... 11
Figure 3 Line description, with the dynamic values highlighted.................................... 13
Figure 4 MDE SoundControl Widget ... 13
Figure 5 Cartesian Graph Widget ... 14

Math Description Engine Programmer's Guide

MDE Programmer's Guide 4

Figure 6 MDE Default Properties ... 21
Figure 7 Four CartesianGraph output examples. ... 23
Figure 8 The curves y=cosx and y = 3*cosx drawn on the same grid 25

Tables
Table 1 Equation Types with Examples.. 15
Table 2 Equation Symbols.. 17
Table 3 MDE Supported Operators .. 17
Table 4 Column separated time-series data from a rocket simulation 18
Table 5 Table of x and y values for graph of y=3*x.. 19
Table 6 Comma-separated data table example .. 20
Table 7 Visual and Sound Representations of Cartesian Graph Elements...................... 27
Table 8 MDE Main Packages ... 32
Table 9 Core Functionality Classes .. 32
Table 10 GUI Classes... 33
Table 11 Keyboard Control Classes.. 34
Table 12 MDE Text Description Examples .. 47

Code Listings
Listing 1 Command Line Describer Example ... 37
Listing 2 Command Line Sonifier Example.. 39
Listing 3 CartesianGraph Example ... 41
Listing 4 MDE Descriptions from Data Arrays... 43

Math Description Engine Programmer's Guide

MDE Programmer's Guide 5

Preface

The Math Description Engine (MDE) is a software component library that generates
accessible text descriptions, sonifications, and drawings of 2D graphs. This guide gives
an overview of the capabilities and use of the MDE API.

This guide describes the alpha version of MDE. MDE is written in Java, and the alpha
version was developed with Java J2SE v1.4.2_04.

Introduction

MDE Programmer's Guide 6

Math Description Engine (MDE)
Software Component Library

Programmer's Guide

Section 1 Introduction

1.1 Purpose
The main purpose of the Math Description Engine (MDE) software library is to generate
accessible descriptions of graphs. More specifically, MDE takes data conveyed in visual
graphs and makes it accessible to visually-impaired users by generating alternative text
and sound descriptions. MDE currently provides alternative descriptions for 2D graphs
given mathematical equations or data input.

1.2 Benefits and Use

1.2.1 Product Accessibility
MDE capabilities were developed to increase accessibility of NASA outreach products
containing graphs of equations, data tables and data plots. MDE was developed as a
reusable, extensible library to facilitate addition of graph accessibility in NASA web
pages, applications and other suitable products.

Though the first application is to NASA outreach products, external use and further
development by commercial and non-commercial organizations is strongly encouraged..
See Research & Development / Technology Transfer.

1.2.2 End-Users
MDE can enable or enhance usability of graphs by blind and visually-impaired users by
providing descriptions where no descriptions or inadequate descriptions were provided
before, or by complimenting other methods of graph description for the vision impaired.
For example, it can reduce the need for assistance from a sighted person to describe a
graph. It might be also used to compliment other graph accessibility methods, such as
tactiles or haptics.

Text descriptions generated by MDE can be read by screen readers such as Jaws for
Windows, or can be input to speech synthesizing software1 to create self-voicing
applications. MDE sonification2 output can be played on standard computer speakers or
headphones. MDE also provides traditional "drawn" graphs with user-settable colors and
line thicknesses to aid users with differing vision-impairments.

1 Such as the Java Speech API.
2 "Sonification is the use of nonspeech audio to convey information.", Sonification Report [10]

Introduction

MDE Programmer's Guide 7

1.2.3 Product Developers
In synthesizing text descriptions of graphs, MDE attempts to mimic how a (qualified)
person might describe the graph to a person who is vision-impaired by: 1.) using natural
language to describe graphs, and 2.) providing intelligent, on-demand (real-time)
description capabilities. These capabilities have obvious applications to reducing the need
to write alternative text (alt text) for graph images. Alt text descriptions are also limited
in use for captioning dynamic data displays. Since MDE can generate descriptions on the
fly, dynamic displays that were previously impossible to caption can now be captioned.

MDE's description and sonification components can be "plugged in" to various
applications (standalone, client-server, etc.) and user-interfaces (pure text, GUI, etc.). For
convenience, MDE provides a set of accessible Java Graphical User Interface (GUI)
widgets for end-user control and display of MDE elements. MDE's graphical
components can similarly be plugged into various applications.

MDE's description, sonification and graphing components can be used independently, or
in combination. MDE's architecture supports solution synchronization among
components when text, sound and graphing are used in combination. This document will
describe MDE core components and how to use their functionality, individually and in
combination.

1.2.4 MDE Demonstration
An application which demonstrates many of MDE's capabilities (from the end-user
perspective) is NASA MathTrax, developed by the MDE development team. MathTrax
illustrates MDE capabilities with a graphing calculator interface allowing the user to
graph equations, data and simulation results. The simulations included in MathTrax are
an accessible rocket simulation and a roller coaster simulation game. MathTrax is
available at the NASA Learning Technologies website: (http://prime.jsc.nasa.gov).
Looking at MathTrax will give you a good idea of MDE's current capabilities and
potential for its application to other products.

1.2.5 MDE Availability
Source code demonstrating how to use the MDE API is provided in demo applications in
the library distribution Some of the demo applications are also presented in the MDE
Tutorial section of this document.

1.2.6 Research & Development / Technology Transfer
The MDE solution engine, visible graph, and other components were developed in house
to facilitate our own research and development into accessible graphs for NASA. To our
knowledge, the MDE text description capability is a novel contribution to graphing and to
accessible math and graphing technologies. We provide all of our MDE library
components, including the non-novel ones, as a convenience for NASA developers who
would like a reusable component they can quickly and easily plug in to make their graphs
more accessible.

http://prime.jsc.nasa.gov

Introduction

MDE Programmer's Guide 8

We will also make the library available to commercial and non-commercial entities
interested in furthering our research or applying the technology to improve the
accessibility of existing graphing applications. Integration of MDE with commercial and
non-commercial software is encouraged. MDE will be released as NASA Open Source
[7] to facilitate further development and applications of the technology.

1.3 Audience
This guide provides an overview of MDE capabilities and usage requirements that can be
used by software managers/analysts/programmers to evaluate MDE for use. It provides
enough detail to assist programmers in getting started with the MDE API, implementing
MDE core functionality.
You do not have to be a mathematics expert to use the MDE Library capabilities. The
interface provides simple, intuitive methods for requesting descriptions, graphs and
sonifications from equation and data input.

1.4 Assumptions and Limitations
We assume the programmer knows Java, and/or how to call Java libraries from the
language you're programming in.
We do not assume you are a math whiz!
This document describes an alpha version of the MDE library:

• There are planned upgrades, which may or may not be backwards compatible
with the alpha version.

• Only the compiled-source library is available for alpha. Future distributions will
include source code for those wanting to extend or customize MDE capabilities.

• There are some known bugs in the code.

• The default text descriptions provided by MDE are still in the experimental phase
and will possibly change.3

1.5 Related Documents/Resources
• NASA Learning Technologies, Johnson Space Center [1]

• NASA Learning Technologies Web http://learn.arc.nasa.gov [5]

• Math Description Engine (MDE) Compiled Source Code Distribution [2]

• Math Description Engine (MDE) Developer's Reference/API Javadoc [3]

• NASA MathTrax website and software application [4]

• NASA Learning Technologies Project Requirements

• NASA Learning Technologies Projects Description [6]

3 Future versions of MDE will allow developers to add to the default set of descriptions, i.e., develop and
use their own descriptions.

http://learn.arc.nasa.gov

Introduction

MDE Programmer's Guide 9

• NASA Learning Technologies Operating Plan

• NASA Open Source Software [7]

• NASA Education Enterprise Strategy [9]

1.6 Feedback
Please email suggestions, bug reports, use reports, and other feedback to
info@prime.jsc.nasa.gov

mailto:info@prime.jsc.nasa.gov

Functional Description

MDE Programmer's Guide 10

Section 2 MDE Functional Overview
This section gives a high-level overview of MDE core functionality.

2.1 High Level Functional Description
Given a mathematical equation or an ordered set of data (or both4), MDE can describe,
sonify and/or draw the resulting graph. Figure 1 shows some typical use scenarios for the
MDE Library.

Figure 1 Example uses of the MDE Library

Figure 1 shows three example uses of the MDE Library. Example 1 shows an application
requesting a text description from MDE, passing in the string equation "y=x^2". MDE
returns a (string) text description "The graph is a parabola opening upward with vertex at
coordinate (0,0)..." Example 2 shows an application requesting MDE graph and
sonification components to draw and sonify the graph of "y=x^2". Example 3 shows an

4 MDE can handle multiple equations, multiple data sets, or a mixture of the two.

Some
application

MDE
Library

“y=x^2”
“The graph is a parabola opening
upward with vertex at coordinate
(0,0)….”

Example1: Request to MDE description component for a text description of the graph of y=x^2.

Example 2: Request to MDE graphing and sonification widgets to graph and sonify “y=x^2”.

Example 3: Request to MDE for sonification of data points.

Some
application

“y=x^2” MDE
Library

Some
application

(-4,16), (-3,9), (-2,4), (-1,1), (0,0), (1,1), ... MDE
Library

Functional Description

MDE Programmer's Guide 11

application requesting sonification of data points such as (-4,16), (-3,9), (-2,4), (-1,1),
(0,0), (1,1),...., and MDE returning audio sonification of the graphed input data.

2.1.1 Text Descriptions of Graphs

2.1.1.1 Purpose
One of MDE's main purposes is to provide natural-language descriptions of computer-
generated graphs so that vision-impaired users can access them. You can use the
Describer class to request text descriptions.

Given a valid equation or data set (See Inputs), MDE solves for the resulting graph and
describes it in terms of the curve solution and its individual features. For example, if you
input the equation "y=3x", a line with slope 3, you will get one of the two following
descriptions, depending on which description mode you request.

Figure 2 Example MDE text description output for the equation "y=3x"

Mode: "visual"

Your input equation is y = 3*x. The graph of the equation is a line. It rises
steeply from left to right with a slope of 3.

Mode: "math"

Your input equation is y = 3*x. The graph of the equation is a line. It rises
steeply from left to right with a slope of 3. The graph has an inclination of
approximately 71.565 degrees or approximately 1.249 radians. The x-
intercept is 0. The y-intercept is 0. The ascending region is {x such that -
infinity < x < infinity}. The equation is a linear equation. The domain of the
equation is {x such that -infinity < x < infinity}. The range of the equation is
{y such that -infinity < y < infinity}.

If you now request a description for a different line, say "y=4x", the relevant values - like
the printed equation, the slope, the direction, etc. - will change. (Actually, the entire
description is regenerated with the new values substituted into the appropriate locations.)
See Description Engine Approach.

The MDE Tutorial will show how to use the Describer class to generate text descriptions.

More example default descriptions are in Appendix A: Current Text Description
Examples.

2.1.1.2 Modes
MDE provides two description modes, "visual" or "math", for graphs of equations. For
data, one type of description is currently provided (independent of mode setting).

Functional Description

MDE Programmer's Guide 12

The "visual" mode attempts to describe graphs of equations in qualitative terms, without
too much math jargon. The "math" mode describes graphs of equations in terms of the
mathematical features and their values (and may also include qualitative information).

2.1.1.3 Content

2.1.1.3.1 Composite Descriptions
Currently, MDE only returns composite descriptions, i.e., a description consists of several
sentences describing the curve, and is returned as a single String value. We are also
developing capabilities to output curve descriptions and individual feature descriptions in
XML format. This enhancement will give application developers maximum flexibility for
how to use and present description data, since you will have a choice of presenting a
paragraph of data or selecting a single feature description to display, or only displaying
descriptions for the features that have changed. The XML output option is a desirable
usability enhancement, especially when the end-user is looking at the effects of changing
a single equation parameter, like slope for a line. In a nutshell, XML output will enable
intelligent application control and/or user-control over what portions of the description
are displayed.

2.1.1.3.2 Text or HTML option
The MDE API can return descriptions in TEXT or HTML format. The HTML
descriptions contain hyperlinks to some mathematical term definitions, but the
implementation of html glossary links is minimal at this time. As stated above, we are
currently developing an XML output option for the descriptions.

2.1.1.3.3 Display Options
Display of the text description String is up to the application developer. We may provide
a Java GUI description widget in the future, as a convenience for developers. The current
String output option provides for the maximum in presentation flexibility for applications
and web pages.

2.1.1.4 Description Engine Approach
MDE generates descriptions by using XSLT templates. If you just want to use the default
templates MDE provides, you may not care how MDE generates descriptions, but a high-
level understanding of what's going will probably be useful to you. If you want to create
your own templates, create additional description modes, or otherwise extend MDE
capabilities, refer to the MDE open source code release [2], MDE Developer's
Reference/API Javadoc [3], and MDE technical papers on the website [2] describing the
method.

MDE templates contain English-language phrases with value placeholders for the
dynamic values. To demonstrate, Figure 3 shows our "visual" line description example,
from above. The dynamic values are: "y=3*x", "line", "rises steeply from left to right", 3.
The remaining words or phrases are the template's static text: "Your input equation is....",
"The graph of the equation is....", "It....with a slope of...."

Functional Description

MDE Programmer's Guide 13

Figure 3 Line description, with the dynamic values highlighted.

Your input equation is y = 3*x. The graph of the equation is a line. It rises
steeply from left to right with a slope of 3

The templates contain rules for when to use a particular word or phrase (e.g., rise/fall;
steeply/gradually, a/an) and how to combine individual feature descriptions to create a
composite graph description. A default template rule, for example, is to state what the
input equation is, then what the graph represents (e.g., line, parabola, etc), then to
describe what the curve looks like and/or it's mathematical features.

As we stated in Composite Descriptions, we are implementing the capability to return
descriptions in XML format so applications can override the defaults for the ordering and
selection of features described. See the aforementioned references [2], [3] if you want to
use different language in your templates. Send us feedback if you want to suggest
modifications to the defaults.

2.1.2 Sonification of Graphs
The MDE API can generate sound alone with the Sounder class. Run the command line
sonification demo for an example of MDE sonification generation with no graphical
interface. The source code example is provided in the MDE Tutorial and the demo
programs.

If you want a ready-made GUI widget to let the user control the sound, you can use our
the SoundControl class. The NASA MathTrax Application demonstrates the various
sonification controls that are available in this widget. A screen shot of the MDE
SoundControl widget is shown in Figure 4.

Figure 4 MDE SoundControl Widget

Figure 4 shows the MDE SoundControl GUI widget, which consists of four areas: a
Sonify button which lets the user play/pause the sonification; a slider bar which allows
manual control of the sonification back and forth across the graph domain; a read-only
graph values area which displays the abscissa and ordinate (x and y) values currently
being "sounded"; and a volume control. Note that the volume control adjusts the
sonification volume only. It does not adjust the computer speaker volume, an important
requirement for screen reader users!

Functional Description

MDE Programmer's Guide 14

2.1.3 Drawings of Graphs
The MDE library contains a Java GUI Widget for displaying Cartesian graphs. Many
color and line setting adjustments are available. Zoom and pan capabilities exist.

The graph can be used with sonification trace turned on or off. If the sonification trace is
on, a visible bar or circle animation trace will sweep the graph as the sonification plays
out. The position of the trace corresponds to the points being currently sonified. For
Cartesian graphs, the sweep graphic is a vertical line that moves across the graph from
the left x bound to the right x bound. For polar graphs, the sweep is a circle or ball that
traces the curve from theta equals zero to 360 degrees. Figure 3 shows a screenshot of the
MDE CartesianGraph widget.

Figure 5 Cartesian Graph Widget

Figure 5 shows a CartesianGraph widget with a line graphed on it. The graph contains
axis lines and numbered grid lines.

At this point, some readers may want to jump ahead to the MDE Tutorial for some
program use context, and then return to the Inputs and Outputs sections for details on
those topics.

Functional Description

MDE Programmer's Guide 15

2.2 Inputs

2.2.1 Mathematical Equations

2.2.1.1 Supported Equation Types
MDE has the ability to classify and generate text descriptions for equations in two
variables such as conic sections5. MDE sonification and graphing components can handle
some equations for which descriptions are not yet available. Table 1 shows currently
supported equation types with examples. The examples are all valid MDE input formats.
See Equation Syntax for more on equation format.

Table 1 Equation Types with Examples

Equation Type Cartesian Form
Example(s)

Polar Form Example(s)

NULL SET x-c=x r-2=r
SINGLE POINT x^2+y^2=0,

x^2+(3-y)^2=0
r=0

ALL POINTS x=x r=r
VERTICAL LINE x=c r=1/cos(theta)
HORIZONTAL LINE y=c r=1/sin(theta)
TWO PARALLEL LINES x^2=c,

y^2=c,
(x-y)^2=c

TWO INTERSECTING
LINES

x^2-(x-y)^2=0

SLOPING LINE y=3*x+4,
y=mx+b

PARABOLA y=x^2,
y=(ay-x)^2

r=-2a/(1+cos(theta))

HYPERBOLA x^2 - y^2 = 0 r=1/(2-2*cos(theta)+sin(theta))
ELLIPSE x*y=1

x^2/a^2 - y^2/b^2 = 1

CIRCLE x^2 + a*y^2 = 25
x^2 + y^2 = 25

r=5

POLYNOMIALS y=x^3, y=3x^5
RATIONAL
FUNCTIONS

y=x/(1+x^2)

ABSOLUTE VALUE y=abs(x)
LOGARITHM y=log(x)

TRIG FUNCTIONS
(see Note on Functions)

y=sin(x)

POLAR ROSE r = sin (a*theta)
r= cos(a*theta)

5 Technically, the equation solver should handle any equation of the form F1(y) = F2(y) where F1 and F2
are rational functions of the independent variable whose coefficients can be any legal expression in the
independent variable.

Inputs

MDE Programmer's Guide 16

POLAR LEMNISCATE r^2=a^2*cos(2*theta),
r^2=2*c^2*cos(2*theta)

POLAR TROCHOID Cardioid:
r=a*(1-cos(theta)),
r=2*b(1-cos(theta))
Other:
r=acos(theta) + bsin(theta) + c, vary c
r=acos(theta) + bsin(theta) + c, large c
r=1+cos(k*theta)
r=acos(2*k*theta)+bsin(2*k*theta)+c, c small
r=acos((2*k+1)*theta) + bsin((2*k+1)*theta)
+c

Note On Functions: If MDE cannot identify a curve as belonging to one of the supported
types, MDE will check to see if the curve behaves like a function6 over the current graph
bounds. If it does, then MDE will generate a "Function Over Interval" description.
Function Over Interval descriptions describe the functional characteristics of the curve
such as rise, fall, maxima, minima, etc. They are also used for data descriptions (See
Appendix A: Current Text Description Examples).

2.2.1.2 Multiple Inputs
MDE can describe, graph and sonify multiple equations at once, e.g., it can graph two
equations on the same grid, sonify both and describe both. Multiple input management
will be discussed in the MDE Tutorial.

2.2.1.3 API Input Format

MDE API methods take equations stored as Java String objects, for example:

String equation = "y=3x+4";
solver.add(equation);

or

AnalyzedEquation solvedEquation = new AnalyzedEquation(equation);

These methods will be described in the tutorial.

2.2.1.4 Equation Syntax
MDE equation input allows for the equations to be entered in various forms following a
basic LEFT EXPRESSION = RIGHT EXPRESSION rule. This allows for greater
flexibility for the user in that equations can be entered in various standard forms, and the
user doesn't have to manipulate the equation to conform to an application input
constraint. All of the following example forms of the line y = 3x + 5 would be
recognized by MDE, as would other forms conforming to LEFT EXPRESSION =
RIGHT EXPRESSION:

6 Only one y value for each x value sampled over the interval

Inputs

MDE Programmer's Guide 17

y = 3x + 5
y - 3x = 5

3x = y - 5

2.2.1.4.1 Reserved Symbols
The letters a-h, k and m are reserved for equation parameters (upper or lower case). The
other letters of the alphabet may be used to represent variables. Equations can also be
entered in terms of r and theta and they will be recognized as a polar form. Table 2
summarizes.

Table 2 Equation Symbols

MDE Equation Elements Valid Symbols
Parameters: Cartesian or Polar Equation a-h, k, m (upper or lower case)
Variables: Cartesian Equation i,j,l,n-z (upper or lower case)
Variables: Polar Equation r, theta (lower case only)

2.2.1.4.2 Assignment of Variables
Since MDE allows various symbols to be used for variables, a convention is needed to
assign one variable as the dependent (y axis) and one as the independent (x axis) variable.
MDE assigns this for Cartesian equations based on alphabetical order. The lower-order
letter in the equation is assigned as the independent variable.

For example, in an equation in x and y, x comes before y alphabetically, so MDE will
treat x as the independent variable and y as the dependent variable.

2.2.1.4.3 Operators
Table 3 lists the valid MDE operators.

Table 3 MDE Supported Operators

Symbol Operation Example
+ Add y=3+x
* Multiply y=3*x
- Subtract y=x-2
/ Divide y=x/4
^ Exponent y=x^2

= Equal y=3*x^2-
1

sqrt Square Root y=sqrt(x)
abs Absolute Value y=abs(x)
exp Exponential Function y=exp(x)

Inputs

MDE Programmer's Guide 18

log Natural Logarithm y=log(x)
pi Real Number Pi y=pi*x
sin Sine y=sin(x)
cos Cosine y=cos(x)
tan Tangent y=tan(x)
() Parentheses y=(x/3)^2

2.2.1.4.4 Syntax Shortcuts
MDE correctly interprets certain omissions in syntax. For example, a multiplication sign
(*) is frequently omitted in written equations, and that omission is correctly interpreted
by MDE. Both

y=3x and
y=3*x

are treated as y equals 3 times x.

2.2.2 Time-Series Data

2.2.2.1 Supported Data Types

MDE can generate output from time-series data, or more specifically, a vector-valued
function of a single variable (one or more scalar functions of a common scalar variable).
For example, f(t) = [cos(t), sin(t), t] is a vector-valued function of t. If that's too
mathematical for you, read on, and you'll get it!

Time series data is typically represented in column-separated tables, as Table 4
illustrates. In column 1, time is the independent variable, and the remaining six columns
contain values of time-dependent quantities computed by a rocket simulation:
acceleration, velocity, altitude, etc..

Table 4 Column separated time-series data from a rocket simulation

TIME(SEC) ACCEL(M/S2) VEL(M/S) ALT(M) RNG(M) FLTEL(DEG) DRAG(N)
0.050 0.000 0.000 0.000 0.000 85.000 0.000
0.100 8.502 0.141 0.002 0.000 85.000 0.000
0.150 23.165 0.933 0.025 0.002 85.000 0.000
0.200 63.664 3.103 0.118 0.010 85.000 0.000
0.250 104.336 7.261 0.367 0.032 85.000 0.004
0.300 104.581 12.565 0.861 0.075 85.000 0.023
0.350 84.362 17.284 1.608 0.141 85.000 0.068
0.400 63.966 20.987 2.566 0.226 84.871 0.128
0.450 52.286 23.887 3.685 0.327 84.758 0.189
0.500 40.559 26.202 4.935 0.443 84.654 0.245

Inputs

MDE Programmer's Guide 19

The independent variable does not have to be time. It could be a spatial variable, such as
x, for plotting x vs y. Or it could be some other scalar variable, like temperature, in a
data set with measurements of temperature and pressure (the pressure of something
measured at each temperature value). Table 5 shows a valid form of spatial data. It is a
table of x and y values for the line y = 3 * x.

Table 5 Table of x and y values for graph of y=3*x

x y
-4 -12
-3 -9
-2 -6
-1 -3
0 0
1 3
2 6
3 9
4 12

Specific input formats that MDE allows are discussed in the next section. But in general,
the time-series data must conform to the following conventions:

• the first column must contain the values for the independent variable,
• the first column values must be numeric: integers or decimals,
• the first column must be in ascending order

MDE analyzes the first column of data to determine if values are consistently spaced, or
whether there are "gaps" in the data. For example, the jump from 4 to 8 in the series 1, 2,
3, 4, 8, 9, 10 indicates a gap in the data between 4 and 8. If MDE finds a gap, it will treat
the data in segments rather than interpolating between gap intervals. This analysis is only
performed for file input, at the time of this writing.

2.2.2.2 Multiple Inputs
MDE can describe, graph and sonify multiple data plots at once. How this is handled
through the API will be discussed in the MDE Tutorial.

2.2.2.3 Input Formats

2.2.2.3.1 Data Format Constraints
MDE input data must consist of real integer or decimal numbers (with the exception of
column headers). Times must be represented as real integer or decimal numbers. MDE
does not currently support mixed time formats (numeric and character).

2.2.2.3.2 API Data Input

The MDE AnalyzedData class is used to initialize two related data columns from two
double[] arrays. The AnalyzedData constructor looks like this:

AnalyzedData(String xName, String yName, double[] xData, double[] yData)

Inputs

MDE Programmer's Guide 20

The xData and yData names denote abscissa (horizontal) and ordinate (vertical) values
for the 2D graph, respectively..

2.2.2.3.3 File Data Input
A text file containing column-separated numeric data, with or without headings, is input
using the TextDataFileParser class in the io package. Columns may be separated by tabs,
commas, or spaces.

2.2.2.3.4 File Creation
Data tables can be created in programs like Excel, and saved as tab or comma-separated-
values (CSV), or a text editor can be used. If column headers are not included,
TextFileDataParser will insert defaults.

Table 5 showed a tab-separated data example. The same data is shown in comma-
separated-value format in Table 6.

Table 6 Comma-separated data table example

x,y
-4,-12
-3,-9
-2,-6
-1,-3
0,0
1,3
2,6
3,9
4,12

There are no restrictions on filenames or filename extensions beyond what Java supports.

2.2.3 MDE Properties

2.2.3.1 Property Values
MDE uses a class named MdeSettings to store and read properties of graph, sonification
and description components in a text properties file, so that user-preferences may be
stored between application runs.

At the time of this writing (March 2005), all but one of the MDE component properties
are graph-related. There is one property for setting an initial description mode7. The
current properties and their default values are shown in Figure 6.

7 Provides consistency of major components API and allows for expansion of properties without impacting
the constructors.

Inputs

MDE Programmer's Guide 21

Figure 6 MDE Default Properties

axisColor = Color.white;
backgroundColor = Color.black;
gridColor = Color.magenta;
lineColor = Color.yellow;
lineSize = 2; // medium
dataPointColor = Color.red;
dataPointsShown = true;
autoscaleGraph = true;
traceOn = true;
descriptionMode = "visual";

2.2.3.2 Property Files
Properties are stored/read from the user's home directory as specified by a call to Java's
System.getProperty method (e.g., Documents and Settings on Windows O/S):

String folder = System.getProperty("user.home");

If you do not specify a filename on construction,

MdeSettings myMdeSettings = new MdeSettings();

MdeSettings will write the properties to a file named MDE_Properties.properties (if the
application/user changes one of the defaults).

If you do specify a filename on construction,

MdeSettings myMdeSettings = new MdeSettings("myMDEProperties.txt");

then MdeSettings will attempt to initialize properties from this file. If the file doesn't
exist, MDE uses the default properties (set internally).

MDE will write the properties to the specified file (or default name) once the
application/user changes a property value. This occurs automatically. The application
does not need to explicitly invoke a save with the save() method.

2.2.3.3 Property Methods
MdeSettings provides getters and setters for each property. See the MdeSettings class
description in the MDE Developer's Reference/API Javadoc [3].

2.3 Outputs
This section focuses on the three core output products of the MDE API. These consist of
method outputs (e.g., text descriptions), graphical user-interface outputs (e.g., drawings
of graphs), or audio interface outputs (e.g., sonification output to speakers). For other
API outputs, refer to the MDE Developer's Reference/API Javadoc.

Outputs

MDE Programmer's Guide 22

2.3.1 Text Descriptions

The Describer class returns text or html formatted descriptions as Java String, using one
of two API methods, for example:

Describer describer;
...
String description = describer.getDescription("y = x^2", "math");

String descriptions = describer.getDescriptions("visual");

The first case requests a math description for the equation "y = x^2".

The second case gets visual descriptions for all AnalyzedItems that are currently "in
focus" within the Solver server class. More about this option will be explained in the
MDE Tutorial.

The descriptions are returned as text or html, depending on what format you previously
specified via the setOutputFormat method:

public void setOutputFormat(String outputFormat)

2.3.2 Cartesian Graphs

2.3.2.1 Settings
Features of CartesianGraph include the ability to easily change the following settings:
graph line thickness, line color, axis color, gridline color, background color, data point
color, show/hide data points, show/hide sonification trace and auto-scale. Auto-scaling is
always on for polar equation graphs, at the time of this writing.

The ability to change color settings, line thicknesses, and other visible features are
important to enable users with low-vision, color-blindness, or other vision problems to set
graph display characteristics that work best for them.

Figure 2.5 shows four examples of CartesianGraph's abilities to display different curve
types and use different settings.

2.3.2.2 Zoom and Pan
CartesianGraph, when used with keyboard controls, provides a pan left/right/up, down
capability using arrow keys. With mouse controls, you can click to re-center the graph.
With zoom controls, you can zoom in or out, i.e., decrease or increase the x-bounds of the
equation or data graph.

Outputs

MDE Programmer's Guide 23

2.3.2.3 Multiple Curves
CartesianGraph can display multiple curves on the same graph. For example, if provide
Solver two equations and then request a drawing from CartesianGraph, two curves will
be drawn, as in Figure 8.

2.3.2.4 Sonification Tracer

When used with MDE SoundControl class, CartesianGraph can display a sonification
tracer bar for Cartesian equation graphs and a ball tracer for polar equation graphs. Figure
7 d shows the vertical tracer bar as a vertical white line near the maximum of the curve.

2.3.2.5 Graph Zoom/Reset Widget
MDE also provides reusable graph controls widget class, IncrementXButtons, that can be
used to control zooming in/out and resetting of default bounds.

Figure 7 Four CartesianGraph output examples.

7 a. Cartesian equation plot with thick red
line on light blue background, dark blue
axes and white grid lines.

7 b. Polar equation curve with yellow graph
line on black background.

Outputs

MDE Programmer's Guide 24

7 c. Polar equation plot with dark blue
graph line on white background with gray
axes and gridlines.

7 d. Plot of a section of rocket altitude data
(red dots) on a yellow curve (interpolated
graph), with sonifier trace (vertical white
bar) paused near the maximum value.

Outputs

MDE Programmer's Guide 25

Figure 8 The curves y=cosx and y = 3*cosx drawn on the same grid

2.3.3 Graph Sonification
MDE sounds out graphs using audible tones. If you've never heard a sonified graph, run
the MathTrax application to hear some examples. Other applications you might look at
are the ViewPlus Accessible Graphing Calculator [12] and The vOICe [13]. The
International Community for Auditory Display (ICAD, http://www.icad.org) [11] is a
good source of information on sonification research and applications.

2.3.3.1 Sounder and SoundControl Classes
You can use the Sounder class or the SoundControl class/widget to output audio
sonifications of graphs. As discussed above, you can also create a visual sound trace on
the CartesianGraph if you use MDE graphing and sonification capabilities together. Use
of MDE sonification classes is covered in the tutorial.

2.3.3.2 Left/Right Panning and Up/Down Pitch Renderings
There are many ways to represent data with sound. A typical approach, and the one
MDE uses, is to scan the graph from left to right to create a visualization of the behavior
of the graph, as a sighted person's eyes might do.

When we use sound instead of graphics to represent data for the visually impaired, we
attempt to convey similar or complimentary mental images and indicators that the graphic
would provide to a sighted person. A common approach to representing a 2D graph is to

http://www.icad.org)

Outputs

MDE Programmer's Guide 26

use tonal pitch for up and down, and left to right panning for side-to-side. Panning gives
a sense of which horizontal location corresponds to the current vertical position (current
pitch). You can hear it best if you wear headphones or position yourself between a left
and right speaker.

For graphs of Cartesian equations or time-series data, MDE sonifications follow the
graph values from the left boundary to the right boundary. For example, if we want MDE
to sonify a Cartesian equation, graphed from x = -10 to x = +10, MDE will do the
following:

• Generate an ordered set of sonification data points by solving the equation at some

increment of x over the interval x in [-10, 10]. Ordering is, of course, from x = -10 to
x=10.

• Convert the data point values to sound, according to the rules outlined in Table 7 and
send the resulting audio to the computer audio output device.

2.3.3.3 Sound Sweep Speed Control
Another factor that enters into conveying graph information through sound is how
quickly the sound information can be processed by the person listening. A sighted person
can usually process a visual graph at their own rate. When sound is used, we ideally need
to give the user some control over the speed of sound conveyance. One way to do this is
by changing the speed of the data sweep (or pan). MDE provides this control in the
Sounder class:

public void sweep (double sweepTimeInSeconds)

MDE also lets the user provide manual control over the sound sweep using the Explore
Values slider bar in the SoundControl class/widget. The user can navigate to a point of
interest on the graph using sound, and then view the x and y value(s) at that point in the
SoundControl Graph Values window.

2.3.3.4 Axis Crossing Indicators
Sonification also employs distinctive sounds to distinguish different semantic elements of
data and/or its visual representation. We referred above to the ability of a sighted person
to take as much time as needed to examine and process information in a visual graph, and
the need to provide similar control for the user relying on sound only.

The flip side of this is that a sighted person can process a lot of visual information at
once, initially viewing the graph in its entirety and processing a lot of semantic
information very quickly. For Cartesian graphs the semantic information includes
coordinate system, vertical and horizontal graph bounds, and how the data plot lies on the
Cartesian plane. When relying on sound to convey the same information, one has to
decompose these meaningful elements and select sounds to convey them as clearly as
possible.

Outputs

MDE Programmer's Guide 27

MDE uses different tone quality (or timbre) to convey whether graph data falls above or
below the x-axis. MDE also uses a clink sound to indicate a y-axis crossing.

A summary of current MDE sonification techniques is shown in Table 7.

Table 7 Visual and Sound Representations of Cartesian Graph Elements

Graphical/Visual Representation Sound Representation
A given point has a vertical position
within the range of vertical positions
(y coordinates) on the graphing plane.
y-values increase from bottom to top.

Relative pitch represents the up and
down "behavior" of the graph points.
The tone increases in pitch as y values
increase and vice versa.

A given point has a horizontal
position within the range of
horizontal positions (x-coordinates)
on the graphing plane. x-values
increase from left to right.

Left/right audio panning. When we're
sonifying the left side of the graph the
sound appears to be on our left side. It
appears to be centered when we're in
the middle of the graph's x bounds and
to the right when we're sonifying the
right side.

A given point is above or below the
x-axis.

Timbre (tone quality) changes occur
depending on whether the point being
sonified is below and above the x-axis.

The graph crosses the y-axis. y-axis crossing is indicated with a clink
sound.

There is no y value for the current
point.

No sound is heard. (An improvement
might be to optionally provide a sound
indicator that the graph is being
"panned", but there are no points in the
current location.)

Planned upgrades for MDE sonification include providing options for tone quality and
type. Individual users process sounds differently. Methods that work well for one person
do not work well for another, whether or not a hearing impairment is involved. By
providing more sound options, applications implementing MDE sonification can then
provide multiple user-settable options to accommodate these user differences.

2.3.3.5 Volume Control
MDE also enables graph sound volume control. The SoundControl class provides a
volume control widget.

Providing for separate graph sonification volume control lets vision-impaired users turn
down the sonification without turning down the audio for their computer and screen
reader!

Outputs

MDE Programmer's Guide 28

2.3.4 MDE Properties
MDE properties is currently the only file output from the MDE library. See the MDE
Properties description above.

Configuring MDE For Use

MDE Programmer's Guide 29

Section 3 Using the MDE API
This section describes the core components of the MDE Library and provides a tutorial for using
the API to implement the core functionality. For a complete reference on the public API, consult
the MDE Developer's Reference/API Javadoc.

3.1 Configuring MDE for use in your software

3.1.1 Download
Download the MDE compiled source library from the MDE Developer's Site at
http://prime.jsc.nasa.gov/MDE.

Download MDE demo applications from http://prime.jsc.nasa.gov/MDE, if desired.

Save to a directory of your choice.

Also see Java JDK and Java Access Bridge configuration requirements below.

3.1.2 Configuration

3.1.2.1 Java JDK and JRE Requirements
You need Java JDK/JRE 1.4.2_04 or higher to use the MDE Library API in your Java
application. Get the Java JDK at http://java.sun.com.

3.1.2.2 Java Access Bridge Requirements
If you want to use or test the MDE interface to screen readers, or use the Java Accessibility API
to provide self-voicing or screen reader access to your own front-end to MDE, you need to
download the Java Accessibility Bridge. Version 1.2 is recommended.

You'll also need a Java-capable screen reader - unless you implement self-voicing. If you
implement your own Java GUI components, the Java Accessibility API methods
setAccessibleName() and setAccessibleDescription() can be used to provide component names
and context help.

3.1.2.2.1 MDE Accessibility to Screen Readers
MDE GUI components use the Java Accessibility API to provide information to java-capable
screen readers, like Jaws for Windows. Our set of GUI components are provided as a
convenience to those not wanting to develop their own, but many developers will prefer to use
their own custom GUI components to display and or control MDE-generated text and
sonification.8. Select MDE components (GUI or non-GUI) based on your application and user-
requirements.

8 MDE is slated for open-source distribution, so eventually, customization and extension of MDE components will
be possible.

http://prime.jsc.nasa.gov/MDE
http://prime.jsc.nasa.gov/MDE
http://java.sun.com

Configuring MDE For Use

MDE Programmer's Guide 30

Screen readers should be able to access MDE Describer output without use of the access bridge
if the display application is already accessible. For example, if you send Describer output to a
web browser, most screen readers should be able to read it as it is plain text or HTML.

MDE sonification output by Sounder will not interfere with screen reader use. The SoundControl
GUI component is a fully accessible front-end to the Sounder class.

Visible graphs are typically not accessible9, which is why we developed MDE alternative
descriptions! However, the CartesianGraph component does provide information in Java
accessibleName and accessibleDescription to announce the presence of the graph and describe its
fundamental characteristics (Cartesian plane, default bounds) to screen reader users.

3.1.2.2.2 Java Access Bridge Configuration
To use and/or test the java accessibility features in MDE you will need to install the Java
Accessibility Bridge. You will also need a java-capable screen reader.

If MDE GUI components (and/or MathTrax) do not work with Jaws or another java-capable
screen reader after you install the Java Access Bridge, try the following:

On Windows OS:
Check your system32 folder, to see if these files are there:

JavaAccessBridge.dll,
JawtAccessBridge.dll, and
WindowsAccessBridge.dll.

If any of them are not there, find them (wherever the access bridge installer put them) and copy
them to the system32 folder.

Find the files accessibility.properties, access-bridge.jar and jaccess.jar and configure as shown
below in each JRE directory on your system:

In jre/lib: accessibility.properties
In jre/lib/ext: access-bridge.jar and jaccess.jar

Restart your computer.

In general, it's necessary to start the screen-reader before you launch your java accessible
applications.

3.1.2.3 Operating Systems
As with other java libraries, you need to include the MDE library jar location in your path. Use
the appropriate approach for your operating system and development environment. An example
for configuring the Windows path is provided below.

9 Though this is an active area of research.

Configuring MDE For Use

MDE Programmer's Guide 31

Windows:
Put the MDE jar file location in your CLASSPATH environment variable, typically accessed at
My Computer/System Properties/Advanced/Environment Variables

For example, if you stored the MDE library jar in a directory named "MathDescriptionEngine",
on drive C, include that path in your CLASSPATH:

C:\MathDescriptionEngine\MDE_lib.jar (EXAMPLE PATH ONLY)

3.1.3 License
See the MDE website and code distributions for license information.

MDE Classes

MDE Programmer's Guide 32

3.2 MDE Classes

3.2.1 Main Packages
The MDE currently contains several packages, but only five are of primary concern to the
application-developer wishing to implement basic MDE functionality. These are shown in Table
8.

Table 8 MDE Main Packages

MDE packages (gov.nasa.ial.mde.*) Core Functional Description
describer Contains classes used to obtain text

descriptions of graphs
properties Contains classes for setting state properties

such as color options for graphical
elements

solver Contains classes that:
1. analyze input equations and data

and generate data used by describer,
sound, and graph classes.

2. manage synchronization of text,
sound and graph components if they
are used in combination.

3. maintain state on multiple input
items (equations or data sets) if
simultaneous graphs are desired or
implied (multi-column time-series
data).

sound Contains classes used to generate and
control sonification

ui Contains classes for drawing and
manipulating Cartesian graphs, enabling
sonification controls, and enabling equation
parameter manipulation.

See the API documentation for a complete list of MDE packages.

3.2.2 Core Classes

3.2.2.1 Core Functionality
To use the MDE library core functionality, you only need to know about a few classes. These are
listed in Table 9 by core functionality (which may be supported by multiple packages):

Table 9 Core Functionality Classes

Core Functionality Core Classes Packages

MDE Classes

MDE Programmer's Guide 33

MDE Properties Access MdeSettings properties

Equation/Data Solution and
Management

Solver
Solution

solver

Text Description
Generation

Describer describer

Visual Graph Generation
and Manipulation

CartesianGraph
IncrementXButtons

ui.graph
ui

Sonification Generation Sounder
SoundControl

sound
ui

Data Handling TextFileDataParser
AnalyzedData

io
solver

3.2.2.2 Core GUI Classes
MDE provides a number of prebuilt, event-driven GUI components in the ui package that you
may want to use for input to or control of MDE components, and for display of MDE outputs.
These are listed in Table 10.

Table 10 GUI Classes

Function GUI Component Classes Description

Display of Input or
Computed Data

DataPanel Displays data column
checkbox group and data
table

Equation Parameter
Input and Control

EquationParameterControl
NumberField

Displays editable equation
parameter fields

Graphing CartesianGraph
GraphBoundsPanel

IncrementXButtons
ColorChooser

ShowColorChooserAction

Graph display
Editable graph bounds

Graph zoom controls
Graph color control

Sonification Controls SoundControl Play/pause, manual sweep,
graph values viewer and
volume control

MDE Classes

MDE Programmer's Guide 34

3.2.2.3 Keyboard Control Classes
Users of screen readers do not typically navigate using a mouse. Keyboard controls are used
instead.

Navigating an accessible Java GUI, like MathTrax, with a screen reader is accomplished by
tabbing from element to element. With Jaws, hitting Tab moves focus one component forward
and Shift+Tab moves one component backwards. Providing navigation shortcuts becomes quite
important for enabling advanced users to jump directly to the component of interest. The MDE
library classes that provide some of this capability are KeyControls and GraphNavKeys. See
Table 11.

Table 11 Keyboard Control Classes

Key Controls Description

KeyControls Sound slider key controls

GraphNavKeys CartesianGraph panning keys

MDE Tutorial

MDE Programmer's Guide 35

3.3 MDE Tutorial
This section provides a introductory tutorial that should help you get started using MDE in your
programs. The examples demonstrate MDE's core capabilities and ease of use.

3.3.1 Required Classes - Solver and MdeSettings
There are two classes you will always need whether you want MDE to produce text descriptions,
sonifications, or drawings of graphs. Those are Solver and MdeSettings.

3.3.1.1 MdeSettings: Setting and storing MDE properties
MdeSettings sets and gets property values for describer, sound, graphing components, such as
line colors and thicknesses for CartesianGraph, and a text description mode. If you specify a
filename on construction, MdeSettings will attempt to initialize properties from the file (if it
exists). If the file doesn't exist, MDE uses a set of default properties, and will automatically
write the properties file to the name specified if a property value is changed.

MdeSettings provides getters and setters to properties so your application can access and change
them.

To construct MdeSettings from properties already stored in a file,

MdeSettings myMdeSettings = new MdeSettings(filename);

where filename is the name of the file you'd like for the MDE Properties file. MdeSettings
automatically looks for (and saves) this file in the application end-user's "home" directory, e.g.,
My Documents on Windows machines.

3.3.1.2 Solver: Solution generation and management
Solver serves the function that its name implies - it takes the inputs to be graphed (equations or
data) and derives solutions that can be described, sonified or graphed.

Solver also serves as a solution manager and synchronizer for the description, graphing and
sonification components. We'll say more about this later, but for now, think of Solver as a
service class used by describer, graph and sounder clients.

Program initialization to set up MdeSettings and Solver will look like this:

import gov.nasa.ial.mde.properties.MdeSettings;
import gov.nasa.ial.mde.solver.Solver;

...
//Create instances of MdeSettings and Solver

MdeSettings currentSettings = new MdeSettings("myAppsMdeProperties");
Solver solver = new Solver();

MDE Tutorial

MDE Programmer's Guide 36

3.3.2 Core Functionality: Describer, Sounder, and CartesianGraph

3.3.2.1 Describer: Text descriptions of graphs
This section will show how Describer, Solver and MdeSettings are used to generate text
descriptions. We'll write a command-line program that prompts the user for an equation, and
uses MDE to output a text description of the equation's solution/graph.

To generate text descriptions from equations or data, you'll first ask Solver to solve the input for
you, then you will request a text description from Describer.

We've shown how to initialize Solver and MdeSettings above. Describer now requires some set
up. First, we create an instance of Describer, passing in the Solver and the MdeSettings object
we created:

Describer describer = new Describer(solver, currentSettings);

Now, we need to tell Describer what output format we prefer. Describer has two output formats
TEXT_OUTPUT or HTML_OUTPUT. The format is set using Describer's setOutputFormat()
method, like this:

describer.setOutputFormat(Describer.TEXT_OUTPUT);

You can call setOutputFormat at any time to change between output formats. For this example,
we'll stick with text output.

Describer is now ready to serve as a description "engine".

Let's say our application has an equation "y=x" input by the user, stored as a Java String variable
called equation. The next step is to give equation to Solver and to ask Solver to solve it:

solver.add(equation);

solver.solve();

Now, we'll ask Solver whether our equation is describable.

If the equation is describable (the equation is valid), we'll ask Describer for the description and
print it to System.out:

if (solver.anyDescribable()) {

String description = describer.getDescriptions("visual");
System.out.println(description);

}

MDE Tutorial

MDE Programmer's Guide 37

And that's basically it! We just used MDE to generate a text description from an equation input.

You probably noticed that Describer's getDescriptions() method took a String argument "visual".
MDE provides the ability to change description "modes" between "visual" and "math"10. The
visual mode is intended to provide a qualitative description of what the graph looks like. The
math mode is intended to provide the description of the graph/solution in mathematical terms.

Managing Multiple Inputs
You may also have wondered why we had to add the equation to Solver before calling solve()
and why getDescriptions() implies plurality. It is because MDE supports
graphing/describing/sonification of multiple inputs simultaneously. If, for example, you want to
graph, describe, or sonify equation1 and equation2 at the same time, you would first add both
equations to Solver:

solver.add(equation1);
solver.add(equation2);

and then you would ask Solver to solve(). Solver will attempt to solve equation1 and equation2
and store their solutions separately. (Note: We're not talking about solving simultaneous
equations here. We're talking about generating a solution for equation1 and a solution for
equation2 and graphing, describing, and/or sonifying them simultaneously.)

Assuming they were both describable, calling getDescriptions(), will generate one String
containing descriptions for both equations. (Requesting a graph will draw both on the same
graph, requesting sonification will sonify both - harmony may ensue.)

When you want to clear the solutions in Solver, you will use the removeAll() method:

solver.removeAll();

In the example above, if you were processing equations one after the other and only wanted to
describe the current equation, you would need to call removeAll() before processing the next
equation, as in the following listing which is the entire CommandLineDescriber program:

Listing 1 Command Line Describer Example

import gov.nasa.ial.mde.describer.Describer;
import gov.nasa.ial.mde.properties.MdeSettings;
import gov.nasa.ial.mde.solver.Solver;

import java.io.BufferedReader;
import java.io.InputStreamReader;

public class Tutorial_CommandLineDescriber {

10 Future versions of MDE will allow the user to create their own descriptions and description modes.

MDE Tutorial

MDE Programmer's Guide 38

public static void main(String[] args) {

//MDE Init:
MdeSettings currentSettings = new MdeSettings("myAppsMdeProperties");
Solver solver = new Solver();
Describer describer = new Describer(solver, currentSettings);
describer.setOutputFormat(Describer.TEXT_OUTPUT);

//Process equations
try {

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(isr);

// Prompt user for input until they enter CTRL-C.
while (true) {

System.out.println("\n\nEnter equation (or CTRL-C to exit): ");
String equation = reader.readLine();

//Give Solver equation and solve
solver.add(equation);
solver.solve();

if (solver.anyDescribable()) {

String description = describer.getDescriptions("visual");
System.out.println("Description: " + description);

} else {
System.out
.println("MDE could not generate a description for "
+ equation + ".");

}

//Clear Solver so next equation will be processed singly
//(we only want one description at a time)
solver.removeAll();

}
} catch (Exception e) {

System.out.println(e);
}

} // end main

} // end class Tutorial_CommandLineDescriber

3.3.2.2 Sounder: Sonifications of graphs
Now let's look at how to use the Sounder class to generate sonifications from equations. It's very
similar to text description generation.

We'll modify the CommandLineDescriber example so that instead of generating text
descriptions, we generate sonifications. Let's first look at the MDE-specific code.

We initialize MdeSettings and Solver initialization, the same as in the above example:

MDE Tutorial

MDE Programmer's Guide 39

MdeSettings settings = new MdeSettings("myAppsMdeProperties");

Solver solver = new Solver();

The initialization to use Sounder is similar to that of Describer. We create a new instance of
Sounder, passing in the Solver and MdeSettings objects.

Sounder sounder = new Sounder(solver,settings);

Sounder is now ready to serve as a sonification "engine".

As before, we get an equation, add it to Solver and ask Solver to solve:

solver.add(equation);

solver.solve();

Now, we ask Solver if our equation is sonifiable. If it is, we use Sounder's sweep() method to
sonify the graph of the equation.

if (solver.anySonifiable()) {
sounder.sweep(3.0);

}

sweep() takes a parameter, double sweeptime, which allows you to adjust the speed of the
sonification. The sweeptime corresponds (approximately) to the duration in seconds of the left to
right "sweep" of a curve over the current bounds of the graph plane. This may include silence if
the curve does not span the entire graph plane.

To close the sound stream, we call close():

sounder.close();

And those are the basics of using Sounder.

Look at the complete CommandLineSonifier in Listing 2.

Listing 2 Command Line Sonifier Example

import gov.nasa.ial.mde.properties.MdeSettings;
import gov.nasa.ial.mde.solver.Solver;
import gov.nasa.ial.mde.sound.Sounder;

MDE Tutorial

MDE Programmer's Guide 40

import java.io.BufferedReader;
import java.io.InputStreamReader;

public class Tutorial_CommandLineSonifier {

public static void main(String[] args) {

MdeSettings settings = new MdeSettings("myMDEProps.prop");
Solver solver = new Solver();

Sounder sounder = new Sounder(solver,settings);

try {

InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(isr);

while (true) {

System.out.println("\n\nEnter equation (or CTRL-C to exit): ");
String equation = reader.readLine();
solver.add(equation);
solver.solve();

//Does user want to sonify equation?
if (solver.anySonifiable()) {

boolean sonflag = true;
while (sonflag) {

System.out.println("Sonifying " + equation +" from x = " + solver.getLeft() + " to x = "
+ solver.getRight());
sounder.sweep(3.0);

//Do they want to hear it again?
System.out.println("\n\nSonify again? (y/n): ");
String s = reader.readLine();
if (s.equals("n")) {

sonflag = false;
}

} // end while sonflag

sounder.close();
}
solver.removeAll();

} // end while true
} catch (Exception e) {

System.out.println(e);
}

} // end main

} // end class Tutorial_CommandLineSonifier

MDE Tutorial

MDE Programmer's Guide 41

MDE sonifications play in a separate thread from the program that is calling them, so in our
example, the user prompt asking whether to sonify again will probably be displayed before the
current sonification ends.

3.3.2.3 CartesianGraph: Drawings of graphs
Our CartesianGraph example will look very similar to our programs for Describer and Sounder!

Our CartesianGraph constructor looks like this, with Solver and MdeSettings objects passed in:

CartesianGraph grapher = new CartesianGraph(solver, currentSettings);

And our request for a graph of our equation or data, looks like this:

if (solver.anyGraphable()) {
grapher.drawGraph();

Let's throw in a little variety this time, and add two equations to Solver (before we request the
graph, of course). This will demonstrate MDE's ability to handle multiple inputs, and looks like
this:

//Give Solver two equations to solve:
String equation1 = "y=x^2-2"; // a parabola
String equation2 = "y = x"; // a line
solver.add(equation1);
solver.add(equation2);
solver.solve();

The procedure for handling multiple inputs (String equations, AnalyzedEquation object or
AnalyzedData objects) is the same whether you're requesting descriptions, sonifications, or
graphs. Here's the full program.

Listing 3 CartesianGraph Example

import gov.nasa.ial.mde.properties.MdeSettings;
import gov.nasa.ial.mde.solver.Solver;
import gov.nasa.ial.mde.ui.graph.CartesianGraph;

import javax.swing.JFrame;

public class Tutorial_CartesianGraph {

public static void main(String[] args) {
//MDE Init:
MdeSettings currentSettings = new MdeSettings("myAppsMdeProperties");
Solver solver = new Solver();

//Create a Java Swing window for our graph:
JFrame window = new JFrame("Tutorial_CartesianGraph");

MDE Tutorial

MDE Programmer's Guide 42

//Create an MDE CartesianGraph instance:
CartesianGraph grapher = new CartesianGraph(solver, currentSettings);

//Add our grapher to the Java window.
window.getContentPane().add(grapher);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.pack();
window.setVisible(true);
window.toFront();

//Give Solver two equations to solve:
String equation1 = "y=x^2-2"; // a parabola
String equation2 = "y = x"; // a line
solver.add(equation1);
solver.add(equation2);

//If our equation is graphable, draw the two graphs.
if (solver.anyGraphable()) {

grapher.drawGraph();
} else {
System.out.println("MDE could not generate a graph for " + equation1
 + " and " + equation2 + ".");
}

} // end main

// Since we're quitting after the first drawing, we won't bother clearing Solver, as we did in the
previous examples.

} // end class Tutorial_CartesianGraph

3.3.2.4 Use Solver to Reset Graph (Solution) Bounds
If you've run the above demo programs, you might have noticed the x ad y bounds of the graph
were [-10,10]. Those are the defaults that Solver.solve() uses.

If you want to change the graph (solution) bounds, you need to tell Solver to generate a new
solution for the desired bounds.

If you use MDE graph controls, like IncrementXButtons, you don't even need to tell
CartesianGraph to redraw, because a call back is built in. Otherwise, after you change the
bounds, you just call CartesianGraph.drawGraph() again. CartesianGraph will pick up the new
bounds and solution from Solver.

Use the Solver methods

solve(Bounds b) or
solve(double left, double right, double top, double bottom)

MDE Tutorial

MDE Programmer's Guide 43

to set your desired solution bounds, like this:

solver.solve(-5,5,5,-5);

And then ask MDE for a new graph, description or sonification (unless you're using a GUI
component where it's a built in call-back action):

if (solver.anyGraphable()) {

grapher.drawGraph();
}

if (solver.anyDescribable()) {

String description = describer.getDescriptions("visual");
System.out.println("Description: " + description);

}

if (solver.anySonifiable()) {

sounder.sweep(3.0);
}
sounder.close();

3.3.2.5 Data Input Examples
We've shown how to request a MDE description, sonification and graph from an equation input.
Now let's look at how we use data as the input to MDE.

To input data to the MDE Solver, we create an AnalyzedData item from two columns of data.
The AnalyzedData constructor we use is:

public AnalyzedData(String xName, String yName, double[] xData, double[] yData)

where xName and xData are the independent variable heading and data, respectively. yName and
yData are the dependent variable heading and data.

In our previous examples, we passed Solver an equation. We could also have used an
AnalyzedEquation. For data, we pass Solver our AnalyzedData object. That's the only
difference in using data versus and equation as input. Here's our full example program.

Listing 4 MDE Descriptions from Data Arrays

import gov.nasa.ial.mde.properties.MdeSettings;
import gov.nasa.ial.mde.solver.Solver;
import gov.nasa.ial.mde.describer.Describer;
import gov.nasa.ial.mde.sound.Sounder;
import gov.nasa.ial.mde.solver.symbolic.AnalyzedData;

public class Tutorial_DataArrayInput {

public static void main(String[] args) {
//MDE Init as always:

MDE Tutorial

MDE Programmer's Guide 44

MdeSettings currentSettings = new MdeSettings("myAppsMdeProperties");
Solver solver = new Solver();
Describer describer = new Describer(solver, currentSettings.getDescriptionMode());
describer.setOutputFormat(Describer.TEXT_OUTPUT);
Sounder sounder = new Sounder(solver,currentSettings);

// Let's create some data for this demonstration of MDE data array input.
// Make two columns of data with headers:

String timesHeader = "TIME";
String valuesHeader = "VALUE_AT_TIME";

double[] times = new double[10];
double[] values = new double [10];

for (int i=0; i < 10; i++){

times[i] = i+1;
values[i] = 10-i;

}

// Let's take our data columns and headers and create an MDE AnalyzedData object:
AnalyzedData myData = new AnalyzedData(timesHeader, valuesHeader, times, values);

//Now give Solver the AnalyzedData object and ask it to solve
solver.add(myData);
solver.solve();

//Now we ask for a description and sonification as before

if (solver.anyDescribable()) {

String description = describer.getDescriptions("visual");
System.out.println("Description of data: " + description);

} else {
System.out.println("MDE could not generate a description for your data.");

}

// Now let's sonify our data

if (solver.anySonifiable()) {

System.out.println("Sonifying your data now: ");
sounder.sweep(3.0);
sounder.close();

}

//Clear Solver so next data set will be processed singly
//(we only want one description at a time)
solver.removeAll();

} // end main

} // end class Tutorial_DataArrayInput

MDE Tutorial

MDE Programmer's Guide 45

3.3.2.6 More Example Programs
As you can see, use of MDE is very simple and straightforward. The library demos contain
additional MDE programming examples.

3.3.3 More About The MDE Solution Engine (Solver and Solution)

We've seen that Solver solves our equations and data for graphing, describing and sonification.
We've also seen that Solver serves as a manager of multiple input equations or data sets
(Describer: Text descriptions of graphs and in Listing 3 CartesianGraph Example).

3.3.3.1 Solution Class
Solver manages solutions with the Solution class. Solution stores and serves up the current
solution for each AnalyzedItem (AnalyzedEquation or AnalyzedData) object being managed by
the Solver. It provides public accessors for getting the solution data, checking the state of a
solution, and managing state. For example, you can use getGraphTrails() to get plotting data, and
getPoints() to get sonification data. If you build your own components, you'll need to know
more about Solver and Solution. Refer to the MDE Developer's Reference/API Javadoc for more
information.

3.3.3.2 Using Components Together - Synchronization
Our tutorial examples illustrated how to use MDE Description, Sonification and Graphing
components separately. If you want to use the components together in an application, you
probably want the Describer, CartesianGraph and Sounder or SoundControl synched up. In other
words, you want them all to display information about the same solution. (Of course,
applications where synchronization is not desired are possible to.)

If you looked at the section Use Solver to Reset Graph (Solution) Bounds, you might have
already figured out that Solver can keep things synched up. Solver can serve as the keeper of the
latest solution(s). If you want to keep components synched up, use Solver as follows.

The trick is to pass the same instance of Solver to all our components, and make calls or
callbacks to Solver when the solution is modified. If our components are notified a solution
change has occurred, then things are kept in synch.

Some of these callbacks and notifications are built into the MDE components. For example, let's
say you're using CartesianGraph and IncrementXButtons. The user changes the bounds of the
solution with IncrementXButtons. The component will make a call back to the Solver object to
update the solution (Solution instance). CartesianGraph receives notice that the solution has
changed and updates the drawing.

SoundControl, the GUI interface to Sounder, doesn't need to take immediate action when the
solution changes, since it doesn't play a sonification until the user requests it. But it does need
access to the latest solution at all times. If SoundControl is created with the same Solver object
all the other components are using, it will always have access to the latest solution.

MDE Tutorial

MDE Programmer's Guide 46

As long as all the components are pointing at the same Solver instance, they all have access to
the latest solution, and can be put on the notification list and respond appropriately.

MDE Text Description Examples

MDE Programmer's Guide 47

Appendix A: Current Text Description Examples
MDE generates descriptions via templates. Description templates contain phrases and sentences
into which specific mathematical values and descriptive terms (adjectives, adverbs) are inserted
depending on the mathematical features present in a solution/graph and their values, and the
mode of description desired. Some examples are listed in Table 12.

Table 12 MDE Text Description Examples

Equation Type Describer mode = "visual" Describer mode = "math"
NULL SET Your input equation is y -2 =

y. The graph of the equation
is a null set. The equation
has no solution.

Your input equation is y -2 = y.
The graph of the equation is a null
set. The equation has no solution.

SINGLE POINT Your input equation is x^2
+y^2 = 0.0. The graph of the
equation is a single point.
The single point solution is
(0, 0).

ALL POINTS Your input equation is x = x.
The solution is the set of all
points. The solution will not
be graphed.

VERTICAL LINE Your input equation is x =
0.0. The graph of the
equation is a vertical line.
The slope is undefined.

Your input equation is x = 0.0. The
graph of the equation is a vertical
line. The slope is undefined. The
graph has an inclination of 90
degrees or approximately 1.571
radians. The x-intercept is 0. The
equation is a linear equation. The
domain of the equation is {x such
that 0 <= x <= 0}. The range of the
equation is {y such that -infinity <
y < infinity}.

HORIZONTAL LINE Your input equation is y =
0.0. The graph of the
equation is a horizontal line.
It is flat with a slope of 0.

Your input equation is y = 0.0. The
graph of the equation is a
horizontal line. It is flat with a
slope of 0. The graph has an
inclination of 0 degrees or -0
radians. The y-intercept is 0. The
equation is a linear equation. The
domain of the equation is {x such
that -infinity < x < infinity}. The
range of the equation is {y such
that 0 <= y <= 0}.

TWO PARALLEL Your input equation is x^2 = Your input equation is (y -

MDE Text Description Examples

MDE Programmer's Guide 48

LINES 1.0. The graph of the
equation is two parallel lines.
The lines are a distance of 2
units apart. They have an
inclination of 90 degrees.

1.0*x)^2 = 1.0. The graph of the
equation is two parallel lines. The
lines are a distance of
approximately 1.414 units apart.
They have an inclination of 45
degrees. The x intercepts are -1, 1.
The y intercepts are -1, 1. The
equation is a degenerate parabola.

TWO INTERSECTING
LINES

Your input equation is x^2 -
y^2 = 0. The graph of the
equation is two intersecting
lines. The lines cross at the
point (0, 0) and have
inclinations of -45 degrees
and 45 degrees.

Your input equation is (x -
2.0*y)^2 -y^2 = 0. The graph of
the equation is two intersecting
lines. The lines cross at the point
(0, 0) and have inclinations of
approximately 18.435 degrees and
45 degrees. The x-intercept is 0.
The y-intercept is 0.

SLOPING LINE Your input equation is y =
3*x. The graph of the
equation is a line. It rises
steeply from left to right
with a slope of 3.

Note that MDE has the ability to
change qualitative words like
"steeply" depending on the line's
characteristics.

Your input equation is y = 3*x.
The graph of the equation is a line.
It rises steeply from left to right
with a slope of 3. The graph has an
inclination of approximately
71.565 degrees or approximately
1.249 radians. The x-intercept is 0.
The y-intercept is 0. The ascending
region is {x such that -infinity < x
< infinity}. The equation is a linear
equation. The domain of the
equation is {x such that -infinity <
x < infinity}. The range of the
equation is {y such that -infinity <
y < infinity}.

PARABOLA Your input equation is y =
1.0*x^2 +0.0. The graph of
the equation is a parabola. It
opens to the North. Focal
length can be a measure of a
parabola's width . The focal
length of this parabola is
0.25. This is a good
'reference parabola' to
compare other parabolas to.
What happens to the focal
length and parabola width
when you change the
coefficient of x^2? Enter
y=c*x^2, with c=1. Then

Your input equation is y = 2.0*x^2
+0.0. The graph of the equation is
a parabola. The vertex is located at
the point (0, 0). The curve has an
axis of symmetry which is the line
given by 1*x = 0. Its axis of
symmetry is oriented at an angle of
90 degrees from the positive x -
axis. In other words, the curve
opens to the North. The focus is
located at the point (0, 0.125). The
focal length is 1/8. The directrix is
the line given by 8*y+1 = 0. The
angle of inclination of the directrix
is 0. The x-intercept is 0. The y-

MDE Text Description Examples

MDE Programmer's Guide 49

change c to see what
happens to the parabola.

intercept is 0. The ascending
region is {x such that 0 <= x <
infinity}. The descending region is
{x such that -infinity < x <= 0}.
The equation is a conic section.
The domain of the equation is {x
such that -infinity < x < infinity}.
The range of the equation is {y
such that 0 <= y < infinity}.

HYPERBOLA Your input equation is
x^2/(1.0^2) -y^2/(1.0^2) = 1.
The graph of the equation is
a hyperbola. The graph
consists of two separate
pieces called branches that
approach each other as if
they would cross, but then
bend back away from each
other. The points on each
piece where the branches are
closest together are called
vertices. The vertices are
located at the points (1, 0), (-
1, 0). The midpoint of the
line segment between the
vertices is called the center
of the hyperbola. The center
is at (0, 0). Way out on each
branch, a hyperbola is nearly
straight and actually
approaches a straight line
called an asymptote. The
equations of the asymptotes
are: 1*x-1*y = 0 and
1*x+1*y = 0.

Your input equation is x^2/(2.0^2)
-y^2/(1.0^2) = 1. The graph of the
equation is a hyperbola. The center
is at (0, 0). The vertices are located
at the points (2, 0), (-2, 0). The
eccentricity is approximately 1.118
. The focal length is approximately
2.236. The equation of the
transverse axis is 1*y = 0. The
length of the semitransverse axis is
2. The equation of the conjugate
axis is 1*x = 0. The length of the
semiconjugate axis is 1. The foci
are located at the points (2.236, 0),
(-2.236, 0). The equations of the
asymptotes are: 1*x-2*y = 0 and
1*x+2*y = 0.The x intercepts are -
2, 2. The equation is a conic
section.

ELLIPSE Your input equation is
x^2/(1.0^2) +y^2/(3.0^2) =
1. The graph of the equation
is an ellipse. Ellipses are
oval shaped curves. How
'flat' or how rounded the oval
is depends on the length of
the major axis compared to
the length of the minor axis.
The longer the major axis
compared to the minor axis,

Your input equation is x^2/(2.0^2)
+y^2/(1.0^2) = 1. The graph of the
equation is an ellipse. The center is
at (0, 0). The eccentricity is
approximately 0.866 . The
semimajor axis is half the distance
across the ellipse along the longest
of its axes. The length of the
semimajor axis is 2. The major
axis is given by the line 1*y = 0.
The major axis inclination is 0

MDE Text Description Examples

MDE Programmer's Guide 50

the 'flatter' the ellipse.
Another term for flatness is
eccentricity. The major axis
of this ellipse with length 6
is approximately 3 times the
length of the minor axis with
length 2. This ellipse is
pretty 'flat'. It's a nice long
oval.

degrees. The semiminor axis is
half the distance across the ellipse
along its shortest principal axis.
The length of the semiminor axis
is 1. The minor axis is given by the
line 1*x = 0. The minor axis
inclination is 90 degrees. The foci
are located at the points (1.732, 0),
(-1.732, 0). The focal length is
approximately 1.732. The x
intercepts are -2, 2. The y
intercepts are -1, 1. It is a closed
curve. The equation is a conic
section. The domain of the
equation is {x such that -2 <= x <=
2}. The range of the equation is {y
such that -1 <= y <= 1}.

CIRCLE Your input equation is x^2
+y^2 = 9.0. The graph of the
equation is a circle. The
center is at (0, 0). The width
of the circle is 6.

Your input equation is x^2 +y^2 =
9.0. The graph of the equation is a
circle. The center is at (0, 0). The
radius is 3. The x intercepts are -3,
3. The y intercepts are -3, 3. It is a
closed curve. The equation is a
conic section. The domain of the
equation is {x such that -3 <= x <=
3}. The range of the equation is {y
such that -3 <= y <= 3}.

POLYNOMIAL Your input equation is y =
x^3. This is the graph of a
cubic polynomial . The curve
rises from the far lower left
to an inflection point at the
point (0, 0) and rises to the
far upper right

POLAR ROSE Your input equation is r =
1.0*sin(3.0*theta). The
graph of the equation is a
polar rose. The graph looks
like a 3-bladed propeller
with its blades symmetric
about the origin.

RATIONAL
FUNCTION

Your input equation is y =
x/(1 +x^2). This is the graph
of a function. The curve is
nearly flat from a horizontal
asymptote at the line y = 0 at

MDE Text Description Examples

MDE Programmer's Guide 51

the far left to a local
minimum at the point (-1, -
0.5), rises to a local
maximum at the point (1,
0.5) and is nearly flat to a
horizontal asymptote at the
line y = 0 at the far right .

DATA DESCRIPTION
EXAMPLE:
ALTITUDE (ALT) VS
TIME

The ALT(M) curve has the
following characteristics.
The portion of the graph in
the visible window consists
of a single continuous graph.
The curve rises from a
boundary point at the point
(0.05, 0) to a local maximum
at the point (7.05, 216.615)
and falls to a boundary point
at the point (14.2, -0.974).

References

MDE Programmer's Guide 52

References
1. NASA Learning Technologies, Johnson Space Center, Information Accessibility Lab

http://prime.jsc.nasa.gov

2. Math Description Engine (MDE) Compiled Source Code Distribution
http://prime.jsc.nasa.gov/MDE

3. Math Description Engine (MDE) Developer's Reference/API Javadoc
4. NASA MathTrax http://prime.jsc.nasa.gov/MathTrax/

5. NASA Learning Technologies http://learn.arc.nasa.gov/
6. NASA Learning Technologies Projects Description

http://learn.arc.nasa.gov/app/Learning%20Technologies%20Projects.pdf
7. NASA Open Source Software http://www.nas.nasa.gov/Research/Software/Open-

Source/index.html
8. NASA Education Home http://education.nasa.gov/home/index.html

9. NASA Education Enterprise Strategy
http://education.nasa.gov/about/strategy/index.html

10. Kramer, G., Walker, B., Bonebright, T. Cook, P., Flowers, J., Miner, N., Neuhoff, J.,
et al. (1999). Sonification report: Status of the field and research agenda. Report
prepared for the National Science Foundation by members of the International
Community for Auditory Display
http://www.icad.org/websiteV2.0/References/nsf.html

11. International Community for Auditory Display (ICAD)
http://www.icad.org/

12. ViewPlus Accessible Graphing Calculator
http://viewplus.com/

13. The vOICe - Seeing with Sound
http://www.seeingwithsound.com/

14. Jaws for Windows, Freedom Scientific
http://www.freedomscientific.com/

15. Java Development Kit http://java.sun.com/j2se/index.jsp

16. Java Runtime Environment http://java.sun.com/j2se/index.jsp
17. Java Access Bridge http://java.sun.com/products/accessbridge/

18. Java Tutorial http://java.sun.com/docs/books/tutorial/index.html

http://prime.jsc.nasa.gov
http://prime.jsc.nasa.gov/MDE
http://prime.jsc.nasa.gov/MathTrax/
http://learn.arc.nasa.gov/
http://learn.arc.nasa.gov/app/Learning%20Technologies%20Projects.pdf
http://www.nas.nasa.gov/Research/Software/Open
http://education.nasa.gov/home/index.html
http://education.nasa.gov/about/strategy/index.html
http://www.icad.org/websiteV2.0/References/nsf.html
http://www.icad.org/
http://viewplus.com/
http://www.seeingwithsound.com/
http://www.freedomscientific.com/
http://java.sun.com/j2se/index.jsp
http://java.sun.com/j2se/index.jsp
http://java.sun.com/products/accessbridge/
http://java.sun.com/docs/books/tutorial/index.html

	Math Description Engine (MDE) Software Component Library
	Programmer's Guide
	Math Description Engine (MDE) Software Component Library Programmer's Guide Section 1 Introduction
	1.1 Purpose
	1.2 Benefits and Use
	1.3 Audience
	1.4 Assumptions and Limitations
	1.5 Related Documents/Resources
	1.6 Feedback

	Section 2 MDE Functional Overview
	2.1 High Level Functional Description
	2.2 Inputs
	2.3 Outputs

	Section 3 Using the MDE API
	3.1 Configuring MDE for use in your software
	3.2 MDE Classes
	3.3 MDE Tutorial

	Appendix A: Current Text Description Examples
	References

